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Abstract. Series expansions for certain thermodynamic variables have been computed for 
various standard model lattices. The high-temperature series for the magnetic susceptibility 
of the Ising model of three-dimensional sc, BCC and FCC lattices allows estimates of the 
critical index y of each series to be made. Dramatic progress in this direction was made 
by the Pad6 Dlog method, and here a similar technique is introduced. Estimates of y from 
row sequences of generalised inverse vector-valued Pad6 approximants are made. The 
results point to the conclusion that y = 1.2406i.0.0017 is the critical index common to all 
three lattices. 

1. Introduction 

Power series expansions for the magnetic susceptibility x for the three-dimensional 
Ising model on several different lattices are available. For the BCC lattice, for example 
(Nickel 1982), 

x (u)=1+8u+56u2+392u3+ . . .  +199518218638233896u2’+ . . .  (1) 

where U = tanh(J/  k T )  is the usual variable for high-temperature power series. Equation 
(1) indicates that the coefficients of U‘ in x( U )  are known up to j = 21. A comprehensive 
review of the data for these series, the methods of analysing them and their present 
status has been provided by Gaunt (1982) and Nickel (1982). A conspicuous feature 
in any such review is the Pad6 Dlog method (Baker 1961). It is generally assumed 
that the behaviour of x ( u )  near the Curie point uc (and corresponding temperature 
Tc) is modelled by 

x ( u ) = c , ( u c - u ) - y =  C,(T-  T,)-y. 
Therefore 

x ’ ( u )  -Y f( U )  := D log x( U )  = -= -. 
x(u) u--c  

(3) 

We see that estimates of y, uc can be obtained from suitably chosen Pad6 approximants 
o f f (  u )  using the data of (1). For the two-dimensional SQ lattice, the values of y and 
uc are known to be 1.75 and a- 1 respectively (Fisher 1959, Domb 1974). Estimates 
of y based on near-diagonal Pad6 approximants converge impressively (Gaunt and 
Guttmann 1976) but from below. This implies that estimation of y based on averages 
over neighbouring approximants does not produce an estimate of y better than that 
of the best individual approximant in this case. It also indicates that some form of 
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1868 P R Graves-Morris 

extrapolation of the estimates of y is required for the SQ lattice. In this spirit, estimates 
of y for the sc lattice based on the [ 1/31 and [ 1/41 row sequences of Pad6 approximants 
were computed, and the results are shown in figure 1. The folly of naive extrapolation 
to 1 = CO of these estimates is obvious from this figure. 

Of course, the erratic behaviour of the estimates of y based on sequences of Pad6 
approximants to f(u), as given by (1) and (3), is notorious, and there are rules for 
deciding the error estimate (Essam and Hunter 1968). It is sometimes said that series 
such as (1) are noisy, but this is not so: its coefficients are known integers, and it is 
the estimates of y which are noisy. A proper analysis of such series should incorporate 
the values of the coefficients exactly, and smooth the estimates of the critical constants 
in some fashion. To this end, simultaneous approximation of several series was 
investigated. 

The vector function f( U) is defined as 

f ( u )  = ( f l ( u ) , f 2 ( u ) ,  * * * , f d ( u ) )  

f,( U )  :=f( U )  = CO+ C I U  + c2u2+ . . . + C N U N  + . . , 

(4) 

where the first component of f(u) is 

( 5 0 )  

and from it the other components off  are defined by 

f2(u):=c1 + c * u + c 3 u 2  + . . . + C N + l U N + . . *  

( 5 6 )  
2 

fd( U )  := Cd-1 + Cdv + c d + l  U + . . . + C N + d - I  + , . . . 
If the coefficients o f f (  U )  are known up to U", the coefficients of f (  U )  are known up 

The method of generalised inverse Pad6 approximants (GIPA) provides rational 
approximants of f ( u )  which have pole positions which are common to all of its 
components. For the case of the model of equation (3), we expect that 

to u n - d + l  

---I 
015 0.10 0 05 

1 / I  
Figurel. The estimates of the critical index ysc for the three-dimensional sc lattice, 
obtained using [I/m]-type Pad6 approximants in the rows m = 3 (A), m = 4  ( x )  are plotted 
against I - ' .  
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In approximating f ( u ) ,  d (usually different) estimates y, of y are obtained from the 
j th component of the GIPA, and these form the components of y. The significance of 
this point is that the error in the prediction of the critical index y can be assessed 
from the internal consistency of the components of y. In fact, the use of GIPA permits 
imposition of a consistency requirement on the various estimates of y, and we obtain 
not only an estimate of y but also an internal error estimate for it. 

2. Construction and application of CIPA 

These approximants grew from the continued fractions containing vector elements 
introduced by Wynn (1963). A GIPA of type [ n / 2 k ]  is a set of d rational fractions 
with a common denominator of degree 2k,  numerators of degree n at most, and which 
match d given power series up to order Z" inclusively. The full axiomatic definition 
is given by Graves-Morris and Jenkins (1986). A GIPA is a kind of Pad6 approximant 
for vector-valued functions. If, for example, all the components of (4) are the same, 
so that f l  = f 2  = . . . = f d ,  the components of the GIPA of type [ n / 2 k ]  to f ( u )  are the 
Pad6 approximants of type [ n  - k / k ]  to f l ( u ) .  

The coefficients of a GIPA of type [ n / 2 k ]  for a power series having the generic form 

f ( z ) = c o + c , z + c 2 z ~ +  . . .  + C " Z " +  . . .  (7)  

are found by the following method (Graves-Morris and Jenkins 1987). Define the 
elements {Mu}; j=o of the matrix M by 

j - i - I  

I = O  
Mij = 1 C l t i t n - 2 k t l  ' C?-l+n-Zk j > i  

i - j - I  

I=O 
Mij = - 1 C l + j + n - Z k + l  ' C?-I+n-Zk j < i .  

In equation (8), we have assumed that cj := 0 for j < 0 and that scalar multiplication 
is defined by 

The set of equations 

MI0 0 MI2 M1,2k 

M 2 k , 0  M 2 k , l  M 2 k , 2  ' * 9 0 

q 2 k  1 

, 4 0  

(9) 

is a consistent set of homogeneous equations, and has a non-trivial solution for 
qo, q l ,  . . . , q 2 k .  In non-degenerate cases, we may take qo= 1 and obtain the 
denominator polynomial 

2 k  
q ( z ) : =  1 qizi .  

i = O  
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The numerator vector polynomial p (  z )  is defined by cross-multiplication and trunca- 
tion, using Nuttall's notation (Nuttall 1970), as 

P ( Z )  := [ f ( z ) d z ) G .  (10) 

From (10) it is obvious that the G I P A  r( z )  satisfies the accuracy-through-order condition 

Convergence of row sequences of Pad6 approximants of functions meromorphic 
in a disk is well understood, and similar results for G I P A  have been established by 
Graves-Morris and Saff (1987). These results suggest (but do not prove) that row 
sequences of GIPA converge for functions of the type shown in ( 5 )  within the appropriate 
disk of meromorphy. 

From a practical viewpoint, it is not advisable to form GIPA to the series (5 )  to 
obtain the estimates of y shown in ( 6 ) .  Because the denominators of G I P A  are real 
and non-negative on the real axis, it turns out that a G I P A  can only have a simple pole 
of the type ( 6 )  if each component of its numerator has a common simple zero, and its 
denominator has a double zero at the same point. To avoid numerical simulation of 
this awkward mathematical occurrence, it is preferable to use the variable U := u/i, 
and the vector function 

where 

F,(u):= c,, 

F * ( U ) : = C ~  +ic2u -c3u2 + . . .  + i N c N + , u N +  . . .  (13) 
+ic,u -cczu2 + . . . +iNcNuN+ . . . 

Fd(U):= cd-l+icdu -cd+lu2+ . . + i  N C N f d - l U N  + . . . . 
Because each G I P A  of F(  U )  has a simple pole at U L- - iuc,  estimates of y are easily 
obtained from its d residues. All G I P A  have poles at conjugate positions, and this 
property is useful for present purposes. The pole at U = iuc  occurs near the NBel point; 
this pole and others on [iuc, im) represent the associated cut of F(u). Likewise, poles 
on (-im, -iuc] other than the one at U = -iuc represent the cut of F ( u )  starting at 
the Curie point. This kind of minimal analytic structure has been assumed as a working 
hypothesis previously (Gammel et a1 1984); convergence of the approximants is 
assumed to occur in much the same way that Pad6 approximants converge to Hamburger 
functions (Baker 1975, Baker and Graves-Morris 1981). 

The previous remarks make an essential difficulty of principle more noticeable. 
The difficulty is that the assumptions ( 2 )  and (3) are too vague to permit determination 
of y, unless further information is available about the discontinuity of x( U), and hence 
that of F , ( u )  across its cut along [ iuc ,  ico). The value of y obtained from Pad6 and 
Pad6-like approximants surely derives from an aggregate of the point discontinuity of 
F l ( u )  at the Curie point, 

A( U )  := 27riy06( U + iuc) (14) 
and the unknown continuum discontinuity near the Curie point. For this reason, some 
limiting procedure or extrapolation to high order may be essential to obtain the true 
value of yo. 
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Despite appearances, the method described thus far is not really free from unknown 
parameters. Each component of F ( u )  can be multiplied by an arbitrary complex 
constant, and the value of y obtained depends on the choice made. To settle this 
indeterminacy, the following procedure was adopted. A scaling parameter A is intro- 
duced which is initially arbitrary, but is subsequently fixed. The values of the coefficients 
of the series (l), for example, are used to obtain the power series coefficients of ~ ( h w ) ,  
and from this we define 

The power series coefficients { E , }  o f f (  w )  are defined by the equation 

f ( w )  = to+ t , w  + &w’+ . . . (16) 

which is the scaled version of (5a).  In passing, note that critical exponents computed 
by the Pad6 Dlog method are invariant under this scaling. Following (12) and (13), 
we define U := w / i  and 

g( U )  := (El ( U), F*( U), . . . , F d  ( U)) (17) 

where 

F l ( u ) : = ~ , ,  +iE,u-E,u’ + . . .  +iNENu,w+ . . .  
F 2 ( u ) : = ? ,  + i ~ , u - t , u ’  + . . .  + i N c N + , u N +  . . .  

If the simple approximation in (3) is made, 

f(w)=----- Y A  
v C - A W  

and 

From (20), we see how to use an estimate of the position of the dominant pole of 
k( U )  and its d residues to obtain d estimates of y .  Let y, be the estimate of y obtained 
from the j th  component of a GIPA for F(u), and let 

y : = ( Y l ,  ? 2 , * * * , Y d ) .  (21) 

From the values { y,}p= I ,  find their average 7, their standard deviation (T and the slope 
m ( y )  of the regression of y, against j. Since each component of F ( u )  should ideally 
lead to the same value of as indicated by (19) and (20) and should not correlate 
withj, the value of A leaving m ( y )  = O  is selected. This method provides ( i )  internal 
consistency of the prediction of y ,  (ii) an internal estimate v of the error of y and 
(iii) extrapolation of the residues to a value independent of j (as described by (21) et 

The method described by (15)-(21) et seq is numerically stable: scaling with the 
seq) .  

parameter A equilibrates the equations. 
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3. Test results 

The fundamental aim of this paper is the extrapolation of values of the critical index 
y (for various 3~ Ising models) obtained using a row sequence of rational approximants. 
In § 4, we describe the numerical results obtained using 3~ Ising model series, whereas 
in this section we describe how the procedure developed works on test series for which 
the indices are known a priori. Two of our test series are Maclaurin expansions of the 
mathematical functions in (22) and (28), and the third test series is the Ising series for 
the ZD SQ lattice. Since we aim to analyse series for which only about 20 coefficients 
are known explicitly, we restrict our attention to results obtainable using coefficients 
of v' up to j = 20 in the series expansions of x( U ) .  

3.1. Model 1 

The mathematical model of the susceptibility which we consider first is based on a 
formula of Sykes et a1 (1972) and is 

(22) X I (  U )  = (1 - u ) - " * ~  + O S (  1 + u ) - O " ' ~ .  

This model has a 'Curie point' at U = 1, a 'NCel point' at U = -1  and a 'critical exponent' 
y = 1.25. Using the procedure described by (14) et seq, d-dimensional GIPA of types 
[ n/4] and [ n/6] were computed for this series with d = 4 and d = 6 .  The maximum 
degree allowed for the GIPA numerator for the Dlog series is 20 - d. A suitable value 
of the scaling parameter A was found for the components of about 50% of the GIPA, 
which allows them to be extrapolated to m ( y )  = 0. The results for y are shown in 
figure 2, along with results from the [ 1/21 and [ 1/31 rows of the PadC table for Dlog x,( U )  

for comparison. From ( l l ) ,  we see that we should take n = I +  m to make a fair 
comparison of GIPA with ordinary Pad6 approximants. Some values of n are plotted 

I 
11 20 

0 16 012 0.08 0.04 
n-' 

Figure 2. Values of the critical exponent and their internal errors are shown for model 1 .  
The values are calculated for GlPA of type [ n / 2 k ]  and a linear fit is shown. Comparative 
results using PadC approximants of order [ I /  m ]  are also shown. U, 2k = 4, d = 4; *, 2 k  = 4, 
d = 6 ;  x , 2 k = 6 ,  d = 4 ;  0 , 2 k = 6 ,  d = 6 ; 0 ,  m = 2 ;  A,  m = 3 .  
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slightly off -set from their true integer values in figures 2- 11  for clarity of presentation 
only. 

The straight line shown in figure 2 is a weighted least-squares regression line for 
the GIPA results, based on the hypothesis that 

Y ( n ) = y o + O / n .  (23) 

Figure 2 shows that the estimates of y depend on n, despite extrapolation to m( y )  = 0 
by scaling. The fit in figure 2 is not very good. Using the standard statistical analysis 
for linear regression and weighted data (Dunn and Clark 1974), the result for yo is 

yo= 1.2337 f 0.0645. (24) 

The error quoted in (24) measures the likely effect of the actual spread of the results 
from the GIPA shown in figure 2. The error is based on (23) as a hypothesis and it is 
purely statistical in character. Knowing the 'correct' answer for yo from (22), we 
conclude that (23) is an incorrect hypothesis. 

By considering the order of magnitude of the power series coefficients of (22), and 
recalling the formula 

r ( n + a )  
lim n b - a  
n-m T ( n + b ) = '  

(Abramowitz and Stegun 1965, section 6.1.46), it is tempting to speculate that 

(26) 

provides a better parametrisation than (23). This is confirmed in figure 3, where the 
same results are plotted against n-2.125. Under the hypothesis (26), we find that 

(27) 

-2.125 r ( n )  = Y O +  en 

yo = 1.2503 * 0.0243 

which is entirely satisfactory. 

6 
'1.35 

'p t ,. ~ 

z 1 .  
11.30 

Figure3. The same data as in figure 2, but plotted against f 2 . I 2 ' .  
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3.2. Model 2 

It is widely believed that confluent singularities are present at the Curie point, and 
that they have the effect of biasing estimates of y. To investigate their effect on the 
numerical procedures we are analysing, we use the model 

x 2 ( ~ ) = ( i - u ) - 1 ~ 2 5 + o . 1  ( 1  - u ) - O . ’ ~  (28) 

for the susceptibility. The results for y derived from the Pad6 Dlog analysis previously 
described are shown in figure 4. Results from the row sequences of [n/4] and [n/6] 
type GIPA of dimensionality d = 4 and d = 6 are shown. For this model, the estimates 
of y obtained from each component of the GIPA (after extrapolation to m (  y )  = 0) are 
virtually identical in the cases shown, and so the internal errors are almost zero. 
Clearly, the internal errors of model 2 are unrealistic and they are neither shown nor 
used. Extrapolation to m ( y )  = O  could not be made for the [6/6], [7/6] and [10/6] 
GIPA with d =4,  and so there are no results for these cases. A linear fit of the form 
(23) was made to the 37 remaining estimates of y, which were weighted equally. This 
fit led to the result 

yo = 1.2459 * 0.0027 

which is an unsatisfactory estimate of the exponent in (25). Comparative results from 
the row sequences of [1/2] and [1/3] Pad6 approximants are also shown in figure 4. 
A simple analysis of the determinants occurring in the explicit formulae for the 
denominators of Pad6 approximants (Baker 1975 ch 1 1 ,  Baker and Graves-Morris 1981 
ch 6) indicates that the error in y is O(n-”* ) .  This conclusion suggests that the same 
behaviour could hold for GIPA,  for which no such analysis has yet been developed. 
To test this conjecture, the same results were plotted against n-1’2 as shown in figure 
5.  The linear fit takes the form 

y ( n )  = yo+ 6n-”2 (29) 

.1 235 

I 
0.16 0.12 0.08 0.04 

n -’ 
Figure4. Values of the critical exponent for model 2. The values are calculated from GIPA 
of type [ n / 2 k ] ,  and a linear (unweighted) fit to them shown. Comparative results derived 
using Pad6 approximants are also shown. The symbols are as in figure 2. 
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T 

1.240 

I 

0.4 0.3 0.2 0 1  
" - 1 1 2  

Figure 5. The same data as shown in figure 2, but plotted against n-1'2 

and the value of yo obtained using the GIPA results for y is 

yo = 1.25 11 f 0.0054. 

This value is entirely compatible with (28) and the fit to the data in figure 5 looks 
reasonable. 

3.3. Model 3 

Data from the SQ lattice are analysed using the method previously described. The 
series for ~ ( u )  from the 2~ Ising model provides a much more realistic test of the 
method, because the coefficients are not smoothly varying, and the equivalent Pad6 
estimates cannot easily be extrapolated to n = m. The method worked satisfactorily 
for [n/6]- and [n/8]-type GIPA,  with d = 4  and d =6. Many of the G I P A  allowed by 
the constraints 

n c 2 0 - d  2 k = 6 , 8  d = 4 , 6  

were unacceptable. About 30% we rejected because no value of A was found for which 
m ( y )  = 0. Around 30% of the remaining GIPA were rejected because they had poles 
in the disk [ U (  < I S U C ,  but not on the known cuts ( - i q  -iuc] and [iuc, ico) in the U 

plane, and these GIPA were deemed to have spurious singularities. The remaining GIPA 

were used to produce the results for the SQ lattice shown in figure 6 .  There is no 
perceptible regression of y against n, and so an L,-weighted mean of indices was 
computed, leading to a weighted mean value 

y = 1 .I497 * 0.0005. 
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I 

8 10 12 14 16 
n 

Figure6. The estimates of the critical index ysQ and its internal error for the two- 
dimensional SQ lattice, obtained using [n/2k]-type GIPA of dimensionality 4 , 6  in the rows 
2k = 6, 8 are plotted against n. The line shows the weighted mean value ysQ = 1.7497. x , 
2 k = 6 , d = 4 ; 0 , 2 k = 6 , d = 6 ; 0 , 2 k = 8 , d = 4 ;  A , 2 k = 8 , d = 6 .  

Because the exact result y = 1.75 is known a priori (Fisher 1959), we observe from 
the figure that the internal errors do provide an indication of the precision of each 
GIPA. It is clear that the internal error estimates are too small by a factor of about 
five, and that the errors need to be rescaled to be realistic estimates of the actual error. 
Assignment of errors, and thereby weights, to an individual approximant is a vital 
ingredient of a satisfactory procedure for reliable extrapolation of PadC-like 
approximants in this context. It is obvious that some Pad6 approximants provide much 
better estimates of y than others (see table 3 of Gaunt and Guttmann (1974)), but 
hitherto it has not been possible to characterise the better Pad6 approximants nor to 
assess the likely precision of each one. 

4. 3~ Ising models 

The same procedure as that described for the SQ lattice was followed for the sc, BCC, 

FCC and D lattices. A greater proportion of the approximants were unacceptable by 
the previous criteria, and so the row sequence with 2 k = 4  was included (but the 
conclusions were scarcely altered). The values of y and its error from the [n/2k]-type 
GIPA are shown in figures 7 and 8 for the sc and BCC lattices. The estimated errors 
for the points in figure 9 for the FCC lattice are absurdly small, and they are not shown. 
Similar vanishingly small errors were also found in model 2, which has no antiferromag- 
netic singularity. It correlates well with the fact that antiferromagnetism is frustrated 
in the FCC lattice and that ~ ( o )  is analytic at U = -vc  (Domb 1974). No satisfactory 
results were found for the diamond lattice. It is evident that the values of y obtained 
for the sc, BCC and FCC lattices depend on n (despite extrapolation to m ( 7 )  = 0), and 
these results appear to be compatible with the formula 

y ( n ) -  Y O +  e / n .  (30) 
No fundamental c1 priori justification of (30) is offered. The parametrisation has been 
used previously in this context (e.g. Nickel 1982) and it looks reasonable for the data 
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0.16 0.12 0.08 0.04 
l l n  

Figure7. The estimates of the critical index ysc and its internal error for the three- 
dimensional sc lattice, obtained using [n/2k]-type GIPA of dimensionality 4 and 6 in rows 
2k = 4 , 6 , 8  are plotted against l / n .  The straight line shows the linear regression. 0 , 2 k  = 4, 
d =4; *, 2 k = 4 ,  d = 6 ;  X ,  2 k = 6 ,  d =4; 0 , 2 k = 6 ,  d = 6 ;  0 , 2 k = 8 ,  d =4; A, 2 k = 8 ,  d =6 .  

0.16 0.12 0 08 0.04 
1 In 

Figure& The estimates of the critical index yscc and its internal error for the three- 
dimensional BCC lattice obtained using [n/2k]-type GIPA of dimensionality 4 and 6 in 
rows 2k = 4, 6 and 8 are plotted against 1/ n. The straight line shows the linear regression. 
Symbols are as in figure 7. 

shown. It is envisaged that 

X( U )  = A(  U)( 1 - u)-’o+ B (  U ) (  1 + U)’, + C ( U )  (31) 

where A( U), B(  U )  and C (  U )  are analytic in a domain including the closed disc Izl d 1, 
ya > -yo+ 1 and A’( 1) # 0. From the analysis of models 1 and 2, it is reasonable to 
expect that the hypothesis (31) leads to the leading behaviour in (30), with a non-zero 
value of 6 corresponding to the non-zero value of A’(1). In this sense, (30) is the 
hypothesis of maximum simplicity. The value of yo obtained using (30) is taken as 
the estimate of the true critical index. 
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'1 250 

1.246 

I F C L  

1.242 

0.16 012 0.08 0.04 
1 In 

Figure9. The estimates of the critical index yFcc for the three-dimensional FCC lattice, 
obtained using [n/2k]-type GIPA of dimensionalities 4 and 6 in rows 2 k = 4 ,  6 and 8 are 
plotted against 1/ n. The straight line shows the (unweighted) linear regression. Symbols 
are as in figure 7 .  

The following values of yo,  namely 

ysc = 1.2418 * 0.0064, 

yecc = 1.2406 f 0.0020 (32) 

yFcc = 1.2403 * 0.0033 

were obtained using the procedures previously described. The results of models 1 and 
2, depicted in figures 2-5, serve as a reminder that the errors quoted are only statistical 
and they depend on the validity of the hypothesis (30). If we assume that the values 
in (32) are all estimates of the same universal index, the combined estimate is 

y = 1.2406*0.0017. (33) 

Nowadays, there is a widespread belief that a sub-dominant singularity ( 1  - V ) - ~ O + ' ,  

with 6 =:, contributes to ~ ( u ) ,  and so we consider an alternative to (30). If there is 
such a sub-dominant singularity controlling convergence, we would expect that 

~ ( n )  = yo+ (34) 

on the basis of the results of models 1 and 2. The same data as shown in figures 7 
and 8 are shown in figures 10 and 1 1 ,  but the data are plotted against n-'". The 
corresponding results (for all three lattices) are 

ysc= 1.2334*0.0118 

YBCC = 1.2357 * 0.0037 

yFcc = 1.2341 *0.0073. 

(35) 

(If these are estimates of the same index, it would be y = 1.2351 *0.0031, again showing 
consistency with universality.) 

The quality of the fit corresponding to (34) shown in figures 10 and 11 is obviously 
much the same as the quality of the fit corresponding to (30) and shown in figures 7 
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I 
0 4  0 3  0 2  0 1  

Figure 10. The same data as shown in figure 7, but plotted against n-''*. 

"-112 

0 4  03 0 2  0 1  
"-11'  

I548 

I 244  

rscr 

I 2 4 0  

I 2 3 6  

Figure 11. The same data as shown in figure 8, but plotted against n - ' I 2 .  
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and 8. The differences in the standard deviations of the fits (not the standard deviations 
of yo) are small, and so one cannot discriminate between (30) and (34) using the data, 
nor should one try to estimate the subdominant exponent from the data. We decide 
between (32), (35) and similar possibilities by opting for the hypothesis of minimal 
complexity, namely (30), and hence for the set of results in (32). 

5. Conclusion 

The values for the critical indices obtained in (32) are quite different from those 
obtained using the best (i.e. diagonal) Pad6 approximants. Of course, the difficulties 
of using Pad6 approximants in this context are well known (see table 6 in Baker and 
Hunter (1973)). The empirical technique described here stabilises the results of Pad& 
like calculations of the critical index of the high-temperature series of the magnetic 
susceptibility of the 3~ Ising models. The results expressed in (32) and (33) are not 
at variance with the renormalisation group predictions of Le Guillou and Zinn-Justin 
(1977) nor with those of Fisher and Chen (1985). Deduction based on empirical 
numerical convergence is notoriously hazardous. No firm conclusions should be drawn 
from the evidence presented in this paper unless further analysis of the method 
corroborates its validity in the present context. 

No doubt the main objectives of this paper can be achieved in other ways, not 
necessarily involving GIPA, and it will be interesting to see what are the essential 
ingredients for stable extrapolation of the exponents of the high-temperature series. 
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